jvm小结

jvm整体架构

JVM(虚拟机):指以软件的方式模拟具有完整硬件系统功能、运行在一个完全隔离环境中的完整计算机系统 ,是物理机的软件实现。jvm的整体架构如下
avatar

详细的jvm整体架构如下
avatar

在一个java进程中可能有很多正在运行的java线程,那么在每一个java线程中都会独立开辟本地方法栈,程序计算器,和Java栈的,而方法区和堆并不是独立开辟的,他们之间是可以共享的。

内存结构每个组成模块的具体概念

本地方法栈(线程私有):登记native方法,在Execution Engine执行时加载本地方法库

程序计数器(线程私有):就是一个指针,指向方法区中的方法字节码(用来存储指向下一条指令的地址,也即将要执行的指令代码),由执行引擎读取下一条指令,是一个非常小的内存空间,几乎可以忽略不记。

方法区(线程共享):类的所有字段和方法字节码,以及一些特殊方法如构造函数,接口代码也在此定义。简单说,所有定义的方法的信息都保存在该区域,静态变量+常量+类信息(构造方法/接口定义)+运行时常量池都存在方法区中,虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。

Java栈(线程私有): Java线程执行方法的内存模型,一个线程对应一个栈,每个方法在执行的同时都会创建一个栈帧(用于存储局部变量表,操作数栈,动态链接,方法出口等信息)不存在垃圾回收问题,只要线程一结束该栈就释放,生命周期和线程一致

JVM对该区域规范了两种异常:

1) 线程请求的栈深度大于虚拟机栈所允许的深度,将抛出StackOverFlowError异常

2) 若虚拟机栈可动态扩展,当无法申请到足够内存空间时将抛出OutOfMemoryError,通过jvm参数–Xss指定栈空间,空间大小决定函数调用的深度

堆(线程共享):虚拟机启动时创建,用于存放对象实例,几乎所有的对象(包含常量池)都在堆上分配内存,当对象无法再该空间申请到内存时将抛出OutOfMemoryError异常。同时也是垃圾收集器管理的主要区域。可通过 -Xmx –Xms 参数来分别指定最大堆和最小堆

栈+堆+方法区的交互关系

HotSpot是使用指针的方式来访问对象,Java堆中会存放访问类元数据的地址,reference存储的就直接是对象的地址
avatar

•堆(线程共享):虚拟机启动时创建,用于存放对象实例,几乎所有的对象(包含常量池)都在堆上分配内存,当对象无法再该空间申请到内存时将抛出OutOfMemoryError异常。同时也是垃圾收集器管理的主要区域。可通过 -Xmx –Xms 参数来分别指定最大堆和最小堆
avatar

新生区

类诞生、成长、消亡的区域,一个类在这里产生,应用,最后被垃圾回收器收集,结束生命。

新生区分为两部分: 伊甸区(Eden space)和幸存者区(Survivor pace) ,所有的类都是在伊甸区被new出来的。幸存区有两个: 0区(Survivor 0 space)和1区(Survivor 1 space)。当伊甸园的空间用完时,程序又需要创建对象,JVM的垃圾回收器将对伊甸园区进行垃圾回收(Minor GC),将伊甸园区中的不再被其他对象所引用的对象进行销毁。然后将伊甸园中的剩余对象移动到幸存 0区。若幸存 0区也满了,再对该区进行垃圾回收,然后移动到1区。那如果1区也满了呢?

老年区

新生区经过多次GC仍然存活的对象移动到老年区。若老年区也满了,那么这个时候将产生MajorGC(FullGC),进行老年区的内存清理。若老年区执行了Full GC之后发现依然无法进行对象的保存,就会产生OOM异常“OutOfMemoryError”

元数据区:元数据区取代了永久代(jdk1.8以前),本质和永久代类似,都是对JVM规范中方法区的实现,区别在于元数据区并不在虚拟机中,而是使用本地物理内存,永久代在虚拟机中,永久代逻辑结构上属于堆,但是物理上不属于堆,堆大小=新生代+老年代。元数据区也有可能发生OutOfMemory异常。

Jdk1.6及之前: 有永久代, 常量池在方法区

Jdk1.7: 有永久代,但已经逐步“去永久代”,常量池在堆

Jdk1.8及之后: 无永久代,常量池在元空间

元数据区的动态扩展,默认–XX:MetaspaceSize值为21MB的高水位线。一旦触及则Full GC将被触发并卸载没有用的类(类对应的类加载器不再存活),然后高水位线将会重置。新的高水位线的值取决于GC后释放的元空间。如果释放的空间少,这个高水位线则上升。如果释放空间过多,则高水位线下降。

为什么jdk1.8用元数据区取代了永久代?

官方解释:移除永久代是为融合HotSpot JVM与 JRockit VM而做出的努力,因为JRockit没有永久代,不需要配置永久代

执行引擎
读取运行时数据区的Java字节码并逐个执行
avatar

JIT:在Java编程语言和环境中,即时编译器(JIT compiler,just-in-time compiler)是一个把Java的字节码(包括需要被解释的指令的程序)转换成可以直接发送给处理器的指令的程序。

avatar

jvm生命周期

Java虚拟机的生命周期 一个运行中的Java虚拟机有着一个清晰的任务:执行Java程序。程序开始执行时他才运行,程序结束时他就停止。你在同一台机器上运行三个程序,就会有三个运行中的Java虚拟机。 Java虚拟机总是开始于一个main()方法,这个方法必须是公有、返回void、直接受一个字符串数组。在程序执行时,你必须给Java虚拟机指明这个包换main()方法的类名。 Main()方法是程序的起点,他被执行的线程初始化为程序的初始线程。程序中其他的线程都由他来启动。Java中的线程分为两种:守护线程(daemon)和普通线程(non-daemon)。守护线程是Java虚拟机自己使用的线程,比如负责垃圾收集GC的线程就是一个守护线程。当然,你也可 以把自己的程序用setDeamon设置为守护线程。包含Main()方法的初始线程不是守护线程。 只要Java虚拟机中还有普通的线程在执行,Java虚拟机就不会停止。如果有足够的权限,你可以调用exit()方法终止程序。

类加载器子系统

类加载子系统的作用

  1. 类加载子系统负责从文件系统或者网络中加载Class文件,class文件在文件开头有特定的文件标识;
  2. ClassLoader只负责class文件的加载,至于它是否可以运行,则由Execution Engine决定
  3. 加载的类信息存放于一块成为方法区的内存空间。除了类信息之外,方法区还会存放运行时常量池信息,可能还包括字符串字面量和数字常量(这部分常量信息是Class文件中常量池部分的内存映射)

类加载子系统的概览图

avatar

类加载器子系统负责从文件系统或网络中加载class文件,class文件在文件头具有特定的文件标识。

Classloader只负责class文件的加载,至于他是否可以运行,则由Execution Engine决定。

加载的类信息存放于一块称为方法区的内存空间。除了类的信息外,方法区中还会存放运行时常量池信息,可能还包括字符串字面量和数字常量。

类加载子系统主要包括三个环节:

  • loading
  • linking:verify,prepare,resolve
  • initialization

1.Loading(加载)环节

  • 通过一个类的全限定明获取定义此类的二进制字节流;
  • 将这个字节流所代表的的静态存储结构转化为方法区的运行时数据;
  • 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口

2.Linking(链接)环节

Verify(验证)

  • 目的在于确保Class文件的字节流中包含信息符合当前虚拟机要求,保证被加载类的正确性,不会危害虚拟机自身安全。
  • 主要包括四种验证,文件格式验证,源数据验证,字节码验证,符号引用验证。

Prepare(准备)环节

  • 为类变量分配内存并且设置该类变量的默认初始值,即零值;
  • 这里不包含用final修饰的static,因为final在编译的时候就会分配了,准备阶段会显式初始化;
  • 不会为实例变量分配初始化,类变量会分配在方法去中,而实例变量是会随着对象一起分配到java堆中。

Resolve(解析)

  • 将常量池内的符号引用转换为直接引用的过程。
  • 事实上,解析操作往往会伴随着jvm在执行完初始化之后再执行。
  • 符号引用就是一组符号来描述所引用的目标。符号应用的字面量形式明确定义在《java虚拟机规范》的class文件格式中。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。
  • 解析动作主要针对类或接口、字段、类方法、接口方法、方法类型等。对应常量池中的CONSTANT_Class_info/CONSTANT_Fieldref_info、CONSTANT_Methodref_info等。

3.Initialization(初始化)环节

  • 初始化阶段就是执行类构造器方法clinit()的过程。
  • 此方法不需要定义,是javac编译器自动收集类中的所有类变量的赋值动作和静态代码块中的语句合并而来。
  • 构造器方法中指令按语句在源文件中的出现的顺序执行。
  • Clinit不同于类的构造器(构造器是虚拟机视角下的init())
  • 若该类有父类,jvm会保证子类的clinit()执行前,父类的clinit()已经执行完毕
  • 虚拟机必须保证一个类的clinit()在多线程下被同步加载。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

## 示例1
public class ClassInitTest {

private static int num1=1;

static{
num1=2;
num2=20;
}

private static int num2=10;

public static void main(String[] args) {
System.out.println(num1);
System.out.println(num2);
}

}

## 示例2
public class ClassInitTest2 {

static class Father {

public static int num = 1;

static {
num = 5;
}
}

static class Son extends Father {

private static int numSon = num;

}


public static void main(String[] args) {
System.out.println(Son.numSon);
}
}

## 示例3
public class ClassTest3 {

public static void main(String[] args) {

Runnable r = ()->{
System.out.println("开始");
ThreadInit threadInit = new ThreadInit();
System.out.println("结束");
};

Thread t1 = new Thread(r);
Thread t2 = new Thread(r);

t1.start();
t2.start();

}


static class ThreadInit {

static {
if(true){
System.out.println("加载当前类"+Thread.currentThread().getName());
while (true){

}
}
}

}

}

类加载器

  • VM支持两种类型的加载器,分别为引导类加载器(BootStrap ClassLoader)和自定义类加载器(User-Defined ClassLoader)
  • 从概念上来讲,自定义类加载器一般指的是程序中由开发人员自定义的一类类加载器,但是java虚拟机规范却没有这么定义,而是将所有派生于抽象类ClassLoader的类加载器都划分为自定义类加载器。
  • 对于用户自定义类来说:使用系统类加载器AppClassLoader进行加载,java核心类库都是使用引导类加载器BootStrapClassLoader加载的。

启动类加载器(引导类加载器,BootStrap ClassLoader)

  • 这个类加载使用C/C++语言实现的,嵌套在JVM内部
  • 它用来加载java的核心库(JAVA_HOME/jre/lib/rt.jar/resources.jar或sun.boot.class.path路径下的内容),用于提供JVM自身需要的类
  • 并不继承自java.lang.ClassLoader,没有父加载器
  • 加载拓展类和应用程序类加载器,并指定为他们的父加载器
  • 处于安全考虑,BootStrap启动类加载器只加载包名为java、javax、sun等开头的类

拓展类加载器(Extension ClassLoader)

  • java语言编写 ,由sun.misc.Launcher$ExtClassLoader实现。
  • 派生于ClassLoader类
  • 父类加载器为启动类加载器
  • 从java.ext.dirs系统属性所指定的目录中加载类库,或从JDK的安装目录的jre/lib/ext子目录(扩展目录)下加载类库。如果用户创建的JAR放在此目录下,也会由拓展类加载器自动加载

应用程序类加载器(系统类加载器,AppClassLoader)

  • java语言编写, 由sun.misc.Launcher$AppClassLoader实现。
  • 派生于ClassLoader类
  • 父类加载器为拓展类加载器
  • 它负责加载环境变量classpath或系统属性 java.class.path指定路径下的类库
  • 该类加载器是程序中默认的类加载器,一般来说,java应用的类都是由它来完成加载
  • 通过ClassLoader.getSystemClassLoader()方法可以获取到该类加载器

用户自定义类加载器

  • 隔离加载类
  • 修改类加载的方式
  • 拓展加载源
  • 防止源码泄漏
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
public class CustomLoader extends ClassLoader {

private final String path;

public CustomLoader(String path) {
super(null);
this.path = path;
}

@Override
protected Class<?> findClass(String name) throws ClassNotFoundException {

byte[] data = new byte[0];

try {
data = readBytes(name);
} catch (IOException e) {
e.printStackTrace();
}
return defineClass(name, data, 0, data.length);
}

private byte[] readBytes(String name) throws IOException {
name = name.replaceAll("\\.", "\\\\");
String classFilePath = path + name + ".class";
File classFile = new File(classFilePath);
InputStream fis = null;

ByteArrayOutputStream bos = null;
byte[] bytes = new byte[1024];

byte[] readBytes = null;

try {
bos = new ByteArrayOutputStream();
fis = new FileInputStream(classFile);
int length;
while ((length = fis.read(bytes)) != -1) {
bos.write(bytes, 0, length);
}
readBytes = bos.toByteArray();

} catch (Exception e) {

} finally {
if (fis != null) {
fis.close();
}
if (bos != null) {
bos.close();
}
}

return readBytes;

}
}

ClassLoader的常用方法及获取方法

ClassLoader类,它是一个抽象类,其后所有的类加载器都继承自ClassLoader(不包括启动类加载器)
avatar
获取ClassLoader的途径:
avatar

双亲委派机制

java虚拟机对class文件采用的是按需加载的方式,也就是说当需要使用该类时才会将她的class文件加载到内存生成的class对象。而且加载某个类的class文件时,java虚拟机采用的是双亲微拍模式,即把请求交由父类处理,它是一种任务委派模式

avatar

双亲委派机制的优势:

  • 避免类的重复加载
  • 保护程序安全,防止核心API被随意篡改

沙箱安全机制

自定义String类,但是在加载自定义String类的时候回率先使用引导类加载器加载,而引导类加载器在加载过程中会先加载jdk自带的文件(rt.jar包中的java\lang\String.class),报错信息说没有main方法就是因为加载的是rt.jar包中的String类。这样可以保证对java核心源代码的保护,这就是沙箱安全机制。

注意:

在jvm中表示两个class对象是否为同一个类存在的两个必要条件:

  • 类的完整类名必须一致,包括包名加载这个类的ClassLoader(指ClassLoader实例对象)必须相同。换句话说,在jvm中,即使这两个类对象(class对象)来源同一个Class文件,被同一个虚拟机所加载,但只要加载它们的ClassLoader实例对象不同,那么这两个类对象也是不相等的.
  • JVM必须知道一个类型是有启动类加载器加载的还是由用户类加载器加载的。如果一个类型由用户类加载器加载的,那么jvm会将这个类加载器的一个引用作为类型信息的会议部分保存在方法区中。当解析一个类型到另一个类型的引用的时候,JVM需要保证两个类型的加载器是相同的。

类的主动使用和被动使用

主动使用,分为七种情况:

  • 创建类的实例
  • 访问某各类或接口的静态变量,或者对静态变量赋值
  • 调用类的静态方法
  • 反射 比如Class.forName(com.dsh.jvm.xxx)
  • 初始化一个类的子类
  • java虚拟机启动时被标明为启动类的类
  • JDK 7 开始提供的动态语言支持:
  • java.lang.invoke.MethodHandle实例的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic句柄对应的类没有初始化,则初始化

参考文献

  1. https://blog.csdn.net/qq_40368860/article/details/84447085
  2. https://blog.csdn.net/rabbit_in_android/article/details/50382739
  3. https://www.cnblogs.com/lwkdbk/p/12707708.html