python文件读写与BOM头总结

最近写项目过程中,遇到csv文件乱码的问题,小结如下:

1. 字符集

  1. ASCII码

美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为ASCII码,一直沿用至今。

  1. 非ASCII编码

英语用128个符号编码就够了,但是用来表示其他语言,128个符号是不够的。比如,在法语中,字母上方有注音符号,它就无法用ASCII码表示。于是,一些欧洲国家就决定,利用字节中闲置的最高位编入新的符号。比如,法语中的é的编码为130(二进制10000010)。这样一来,这些欧洲国家使用的编码体系,可以表示最多256个符号。

至于亚洲国家的文字,使用的符号就更多了,汉字就多达10万左右。一个字节只能表示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。比如,简体中文常见的编码方式是GB2312,使用两个字节表示一个汉字,所以理论上最多可以表示256×256=65536个符号。

  1. Unicode

如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是Unicode,就像它的名字都表示的,这是一种所有符号的编码。

Unicode当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样,比如,U+0639表示阿拉伯字母Ain,U+0041表示英语的大写字母A,U+4E25表示汉字“严”。具体的符号对应表,可以查询unicode.org,或者专门的汉字对应表。

这里就有两个严重的问题,第一个问题是,如何才能区别unicode和ascii?计算机怎么知道三个字节表示一个符号,而不是分别表示三个符号呢?第二个问题是,我们已经知道,英文字母只用一个字节表示就够了,如果unicode统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0,这对于存储来说是极大的浪费,文本文件的大小会因此大出二三倍,这是无法接受的。

它们造成的结果是:1)出现了unicode的多种存储方式,也就是说有许多种不同的二进制格式,可以用来表示unicode。2)unicode在很长一段时间内无法推广,直到互联网的出现。

  1. UTF-8

UTF-8是Unicode的实现方式之一,UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度。

UTF-8的编码规则很简单,只有二条:

1)对于单字节的符号,字节的第一位设为0,后面7位为这个符号的unicode码。因此对于英语字母,UTF-8编码和ASCII码是相同的。

2)对于n字节的符号(n>1),第一个字节的前n位都设为1,第n+1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。

下表总结了编码规则,字母x表示可用编码的位。

1
2
3
4
5
6
7
Unicode符号范围 | UTF-8编码方式
(十六进制) | (二进制)
——————–+———————————————
0000 0000-0000 007F | 0xxxxxxx
0000 0080-0000 07FF | 110xxxxx 10xxxxxx
0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
  1. 字符顺序标记(BOM)

文本文件其实就是用一种特定的字符编码来将二进制源数据转换成文字。多数文本编辑器都可以编辑不同编码的文本文件,那么文本编辑器是怎样通过源二进制数据来得知这段数据的文本编码呢?答案就是靠字符顺序标记(Byte Order Mark),在文章里面我们就统一用英文简写BOM指这一名词。下面是常用Unicode编码的BOM

1
2
3
4
5
UTF-8: EF BB BF
UTF-16 big endian: FE FF
UTF-16 little endian: FF FE
UTF-32 big endian: 00 00 FE FF
UTF-32 little endian: FF FE 00 00

2. io流

文本 I/O

1
2
3
4
创建文本流的最简单方法是使用 open(),可以选择指定编码:
f = open("myfile.txt", "r", encoding="utf-8")
内存中文本流也可以作为 StringIO 对象使用:
f = io.StringIO("some initial text data")

二进制 I/O

1
2
3
4
创建二进制流的最简单方法是使用 open(),并在模式字符串中指定 'b' :
f = open("myfile.jpg", "rb")
内存中二进制流也可以作为 BytesIO 对象使用:
f = io.BytesIO(b"some initial binary data: \x00\x01")

原始 I/O

1
2
原始 I/O(也称为 非缓冲 I/O)通常用作二进制和文本流的低级构建块。用户代码直接操作原始流的用法非常罕见。不过,可以通过在禁用缓冲的情况下以二进制模式打开文件来创建原始流:
f = open("myfile.jpg", "rb", buffering=0)

3.文件相关操作

Python open() 函数用于打开一个文件,并返回文件对象,在对文件进行处理过程都需要使用到这个函数,如果该文件无法被打开,会抛出 OSError。

注意:使用 open() 函数一定要保证关闭文件对象,即调用 close() 函数。

open() 函数常用形式是接收两个参数:文件名(file)和模式(mode)。

完整的语法格式为:

1
2
3
4
5
6
7
8
9
10
11
12
13
open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)


参数说明:

file: 必需,文件路径(相对或者绝对路径)。
mode: 可选,文件打开模式
buffering: 设置缓冲
encoding: 一般使用utf8
errors: 报错级别
newline: 区分换行符
closefd: 传入的file参数类型
opener:

mode 参数有:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
t	文本模式 (默认)。
x 写模式,新建一个文件,如果该文件已存在则会报错。
b 二进制模式。
+ 打开一个文件进行更新(可读可写)。
U 通用换行模式(不推荐)。
r 以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。
rb 以二进制格式打开一个文件用于只读。文件指针将会放在文件的开头。这是默认模式。一般用于非文本文件如图片等。
r+ 打开一个文件用于读写。文件指针将会放在文件的开头。
rb+ 以二进制格式打开一个文件用于读写。文件指针将会放在文件的开头。一般用于非文本文件如图片等。
w 打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。
wb 以二进制格式打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。一般用于非文本文件如图片等。
w+ 打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。
wb+ 以二进制格式打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。一般用于非文本文件如图片等。
a 打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。
ab 以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。
a+ 打开一个文件用于读写。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,创建新文件用于读写。
ab+ 以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。如果该文件不存在,创建新文件用于读写。

3.参考文献

  1. https://www.cnblogs.com/zhaox583132460/p/3410315.html
  2. https://blog.51cto.com/u_14320361/2486142